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Summary 

  

The origin of the Log Law behavior of a wall-bounded turbulent boundary layer is outlined.  The 

new theory of the origin of the Log Law starts with previous experimental observations that 

show that the turbulent boundary layer fluid undergoes rapid changes in the wall shear stress at 

any point on the wall.  The main insight provided herein is that this rapid change in the wall 

shear stress corresponds to a rapid, quantifiable change in the location of the viscous sublayer 

toward and away from the wall in the velocity boundary layer.  When this viscous layer is then 

spatially averaged, we theorize that the normal exponential-like decay of the viscous shear is 

stretched out in the tail region.  The next step is to use various experimental results from the 

literature to show that the viscous sublayer, which is directly proportional to the second 

derivative of the velocity profile, extends much deeper into the boundary layer than previously 

thought.  In fact it is shown that the viscosity effects extend all the way into the Log Law region 

where the spatially-averaged tail region begins to show a one-over-distance-from-the-wall-

squared behavior.  Hence, when the spatially-averaged second derivative profile is twice 

integrated to obtain the velocity profile perpendicular to the wall, one obtains the classic 

logarithmic profile behavior of the Log Law region of the turbulent boundary layer. 
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1.  Introduction 

 

 Beginning with the pioneering work of Reynolds [1], there has been a concerted effort to find 

coordinate scaling parameters that make the scaled velocity profiles and shear-stress profiles 

taken at different stations along the flow appear to be nearly identical.  For turbulent boundary 

layers, this search for “similarity” was mostly unsuccessful.  This led to the practice of trying to 

find similarity in subregions of the whole profile.  Perhaps the most successful case of partial 

similarity was developed by von Kármán [2] and Prandtl [3] and is known as the Logarithmic 

Law or “Log Law.”   The Log Law states that in a certain subregion of the turbulent boundary 

layer the average velocity in the streamwise x-direction ( , )u x y  of a wall-bounded turbulent flow 

is given by 

( ), 1
ln ,

u x y yu
B

u

τ

τ κ ν

 
= + 

 
 

where y is the height perpendicular to the solid surface , ν  is kinematic viscosity, κ  and B are 

constants, and uτ  is the Prandtl velocity scaling parameter, the so-called friction velocity.   

The Log Law is widely believed to describe most, if not all, turbulent wall-bounded flows.  

Furthermore, many believe that the empirical constants, the so-called von Kármán constant, κ , 

and the additive constant, B, are universal.  However, there seems to be little consensus about 

what these universal values actually are and whether the pipe flow constants are the same as the 

constants for flow over a plate.  In addition, there does not seem to be any consensus as to the 

extent of the Log Law, i.e. which portion of the profile is actually described by the Log Law.   

The theoretical work on the Log Law has been unable to answer any of these critical 

questions.  The theoretical work on the Log Law began with von Karman [2] and Prandtl [3] who 

postulated that the Log Law could be derived from a simple eddy viscosity/mixing length 

argument.  An alternative derivation of the Log Law was made by Millikan [4] using a inner-

outer layer matching argument.  However, none of the available derivations, including those 

using dimensional arguments or the Lie-group analysis of Oberlack [5], provide any insight into 

the physical processes in a turbulent boundary layer that create the logarithmic velocity profile.  

Therefore, it is evident that a physical model of the turbulent boundary layer that would explain 

the origin of the Log Law is lacking.  George [6] has pointed out that even though there does not 

seem to be a solid theoretical foundation for the Log Law for flow over-a-plate boundary layers, 

there is ample empirical evidence that supports its existence.   

 In what follows, we outline a new theory to explain the existence of the Log Law region of a 

wall-bounded turbulent boundary flow.  The key insight comes from the fact that experimental 

work [7-9] makes it clear that the wall shear stress wτ , or equivalently, the skin friction 

coefficient fc , undergo very large fluctuations at any point on the wall in the turbulent flow 

region.  The most important contribution provided herein is that these large changes in the wall 

shear stress induce quantifiable fluctuations in the location of the viscous sublayer in the 

boundary layer.  The quantification will be detailed in the next section where it will be shown 

that the fluctuations of the wall shear stress causes the second derivative profile, which defines 

the viscous sublayer, to move closer or further away from the wall, depending the on the 

instantaneous wall shear stress value.   

 The question then becomes is how this fluctuation of the viscous sublayer affects the Log Law 

region of the fluid.  Conventional thinking is that the viscous sublayer only extends from the wall 

(1)
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to about 30y
+ ≅ into the fluid [6].  This would seem to make any fluctuations in the location of 

viscous sublayer irrelevant to the Log Law which is generally assumed to just start at 30y
+ ≅  

and extend much deeper into the fluid [6].  Resolution to the conundrum comes from the use of 

experimental results to show that the viscous shear layer actually extends much deeper into the 

boundary layer than previously thought.  In fact it extends all the way into the Log Law region.  

To show this, we take various experimental velocity profile datasets available in the literature 

and numerically differentiate the data twice.  What we find is that the second derivative profiles 

in the Log Law region are many orders of magnitude down from the peak value.  Never-the-less, 

we find that in the Log Law region, the second derivative profiles do track the second derivative 

of Eq. 1 very well.  Therefore fluctuations in the second derivative profile will have a direct 

effect on the Log Law region of the fluid.   

 These two insights are well supported by experimental evidence and form the basis of the new 

theory.  That is, time fluctuations of the wall shear stress cause a spatial fluctuation of the second 

derivative profile towards-away from the wall and these spatial fluctuations reach all the way 

into the Log Law region of the boundary layer.  The major unknown at this point is that the 

shape of the instantaneous second derivative is not known nor is it easily experimentally 

accessible in a wind tunnel.  Alternatively one could use DNS computer results.  While this is an 

option we are presently exploring, it was not deemed possible from a time perspective for 

inclusion in this manuscript.  This is where our conjecture comes into play.  We theorize that the 

tail region of the turbulent boundary layers instantaneous viscous sublayer has the same tail 

behavior as the laminar flow case.  What we actually expect to see is a distorted laminar-like 

second derivative profile tail.  However, for illustrative purposes we will assume the entire shape 

is laminar-like.  For wall-bounded laminar flow, it is known that for the laminar flow case the 

second derivative profile decays in a Gaussian-like manner [10].  What we think happens in the 

turbulent case is that as one does the time average of the spatially fluctuating second derivative 

profile, the Gaussian-like decay of the instantaneous second derivative profile is stretched out 

into a one-over-distance-from-the-wall-squared behavior, at least in the Log Law region on the 

boundary layer.  The fact that the viscous sublayer extend all the way into the Log Law region 

means that when the second derivative profile is twice integrated to obtain the velocity profile 

perpendicular to the wall, one obtains the classic logarithmic profile of the Log Law.   

 The simplified model starts by assuming that the entire instantaneous second derivative 

profile has roughly the same shape as the laminar flow shear profile.  We then present second 

derivative velocity profiles plots that show what would happen if the wall shear stress of a 

laminar-like profile is changed to a value corresponding to the maximum and minimum 

measured instantaneous shear stress values.  Experimental results indicate that the turbulent 

boundary layer at any point on the wall is fluctuating between these maximum and minimum 

values.  Hence one would expect that given the frequency of occurrence, one could do a spacial 

average to show how the normal Gaussian type decay of the velocity shear profile is changed 

into a one-over-distance-from-the-wall-squared behavior.  

 To begin, we first work out the relationship between the wall shear stress fluctuations and the 

location of the viscous shear layer of the boundary layer. 

 

2.  Viscous Layer Description 

 For the work herein, it is important to understand the relationship between the wall shear 

stress and the location of the viscous layer of the wall-bounded turbulent boundary layer.  From a 

flow governing equations perspective, the viscous effects will be important where the second 
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derivative of the velocity ( ),u x y  is significant.  The question then becomes is how one would 

describe the location of this viscous sublayer.  In a recent set of papers Weyburne [10,11] 

introduced a boundary layer description method based on the observation that the second 

derivative of the laminar velocity profile over a plate had a Gaussian-like appearance as 

illustrated in Fig. 1 ( 1µ  will be defined shortly).  The mathematical description of the viscous 

boundary layer region therefore borrows from probability density function (PDF) methodology 

and uses central moments of the second derivative-based kernel to describe the location and 

shape of the second derivative profile.  Since the second derivative of the velocity is directly 

related to the viscous term in the momentum balance equation, we have termed this the “viscous” 

boundary layer description.   

For wall-bounded 2-D flows, the viscous nth central moment nλ  is 

( )
{ }2

1
1 2

0

( , )
,

h
n e

n

d u x y u
dy y

dy

µ
λ µ

−
≡ −∫  

where y=h is deep into the free stream, eu  is the free stream velocity at the boundary layer edge, 

and where the first moment about the origin, 1µ , is part of the normalizing parameter ( )1/µ− eu

obtained as the requirement that 0λ
 
have a value of unity.  The derivative in Eq. 2 is written in 

this way to emphasize the probability-density-

function-like behavior.   

Borrowing from probability density function 

(PDF) language, the first moment about the 

origin, 1µ  is called the “mean” location of the 

viscous sublayer.  The mean location is 

therefore the center of action for the viscous 

sublayer for boundary layer flows.  It easy to 

show that 1µ  for the Blasius laminar flow case 

is given by 1 / 0.33206ex uµ ν= [10].  For the 

general case, the value of 1µ  is found by 

performing the integration of 0λ  so that 

 

1

0

,
( , )

e e

w

y

u u

du x y

dy

ρν
µ

τ

=

= =  

where wτ  is the wall shear stress, ν  is the 

kinematic viscosity, and ρ  is the density.   In 

terms of the skin friction coefficient fc , or the 

friction velocity uτ , this becomes 
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Figure 1:  Second derivative of the velocity 

of the Blasius [12] solution for laminar flow. 



 

 

µ

Looking at Eq. 3, it now becomes cl

effect on the mean location of the second derivative profile, and therefore on the velocity profile 

itself.  It is evident that the center of action of the viscous 

1µ , is inversely proportional to 

the viscous sublayer is also undergoing 

the instantaneous wall shear stress value

The use of Eq. 3 means that the shear stress fluctuations have a direct quantifiable effect on 

the location of the viscous sublayer.  Due to the importance of this point, we feel it is instructive 

to present a visual model to re-enforce this observation.  In Fig. 2 we depict a simple 

of a fluid flowing along a wall that is undergoing separation.  The velocity gradients at the wall 

are going from positive to negative as one moves along the wall from left to 

profiles are replotted in plus units, then they would all look 

Wall (at least up to the point of separation)

are spread over a larger and larg

profiles, which would look something like Fig. 1

mean location must be shifting

imagine a turbulent boundary layer in which

from almost zero (separation point)

shear stress value.  The same thing will happen

closer to or further away from the wall

This then is the first important point

undergoing rapid time-varying changes in

change in the spatial location of the viscous 

Figure 2:  Diagrammatic depiction of flow along a

5 

1 2

2
.e

e f

u

u c uτ

νν
µ = =  

, it now becomes clear that a change in the wall shear stress will have a direct 

effect on the mean location of the second derivative profile, and therefore on the velocity profile 

ent that the center of action of the viscous sublayer, given by the mean lo

, is inversely proportional to wτ .  Therefore, a fluctuation of the wall shear stress means

is also undergoing a fluctuation away from or toward the wall

stantaneous wall shear stress value.   

means that the shear stress fluctuations have a direct quantifiable effect on 

the location of the viscous sublayer.  Due to the importance of this point, we feel it is instructive 

enforce this observation.  In Fig. 2 we depict a simple 

of a fluid flowing along a wall that is undergoing separation.  The velocity gradients at the wall 

are going from positive to negative as one moves along the wall from left to right.  

replotted in plus units, then they would all look similar according to the Law of the 

(at least up to the point of separation).  However, in actual dimensioned units 

and larger boundary layer thickness δ .  Hence the second derivative 

something like Fig. 1, are becoming broadened which means that the 

ing away from the wall as one moves from left to r

imagine a turbulent boundary layer in which at any point on the wall the shear stress is going 

(separation point) to a value many times larger than the average measured 

The same thing will happen in this case, the viscous sublayer will move 

closer to or further away from the wall depending on the instantaneous wall shear stress value

is the first important point to be made:  for a wall-bounded turbulent boundary layer 

changes in the wall shear stress, there must be an accompanying 

location of the viscous sublayer.    

2:  Diagrammatic depiction of flow along a wall undergoing separation.

a change in the wall shear stress will have a direct 

effect on the mean location of the second derivative profile, and therefore on the velocity profile 

, given by the mean location 

a fluctuation of the wall shear stress means that 

toward the wall depending on 

means that the shear stress fluctuations have a direct quantifiable effect on 

the location of the viscous sublayer.  Due to the importance of this point, we feel it is instructive 

enforce this observation.  In Fig. 2 we depict a simple schematic 

of a fluid flowing along a wall that is undergoing separation.  The velocity gradients at the wall 

right.  If the velocity 

according to the Law of the 

units these profiles 

ence the second derivative 

are becoming broadened which means that the 

as one moves from left to right.  Now 

the shear stress is going 

to a value many times larger than the average measured wall 

, the viscous sublayer will move 

depending on the instantaneous wall shear stress value.  

turbulent boundary layer 

stress, there must be an accompanying 

 (4) 

wall undergoing separation. 
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3.  The Log Law Revealed 

 The next step is to tie these rapid changes of the viscous layer to the Log Law region.  This is 

not a straightforward task as was discussed in the Introduction.  Conventional thinking is that the 

viscous sublayer only extends from the wall to about 30y
+ ≅  into the fluid whereas the Log 

Layer only just starts where the viscous sublayer leaves off [6].  Conventional thinking may in 

fact be correct in terms of contributions to the momentum equation.  However, in terms of 

contributions to the “tail” of the viscous sublayer, we can show that the Log Law region is an 

integral part of the tail region of the second derivative profile.  In Figs. 3-6 we plot a number of 

experimental turbulent boundary layer velocity profile datasets that show Log-Law-type 

behavior (additional examples are given in the Appendix 1).  In Figs. 3a to 6a we plot the 

datasets using the classic Log Law “plus” unit scaling.  In Figs. 3b to 6b the velocity profile 

datasets are twice differentiated to yield the second derivative profile plots.  The differentiation 

was done using the simple 2-point numerical differentiation formula.  It is known that numerical 

differentiation is unstable in the presence of noise so it is necessary to use high quality datasets 

like those in Figs. 3-6 in order to see Log Law behavior in the second derivative profiles.  Note 

that some of plots look discontinuous  due  to  the  fact  that  in  some  cases  the numerical 

second derivatives generated negative values which do not plot on a Log scale.  We made no 

attempt to fix these values and plotted the data by simply leaving out the negative values.  In 

spite of the noisy look to some of these plots, it is apparent that in the regions in which the 

velocity profile is following the Log Law profile, the second derivative profile plots also follow 

the Log Law in these same regions.  The plots of the experimental data make it clear that the 

viscous sublayer extends all the way into the Log Law region.  

 This then is the basis of the new theory of the origin of the Log Law region.  Time-varying 

wall fluctuations of the wall shear stress cause the viscous sublayer to move toward-away from 

the wall depending on the value of the instantaneous wall shear stress.  These fluctuations extend 

down into the Log Law region.  These insights are well supported by experimental results.  What 

is unknown at this point is the actual shape of the instantaneous second derivative profile.  It is 

not experimentally possible to measure the instantaneous velocity profile in a wind tunnel at the 

present time.  Alternatively one could use DNS computer results.  While this is an option we are 

presently exploring, it was not deemed possible from a time perspective for inclusion in this 

manuscript.  We therefore theorize as to the shape of the tail of the instantaneous second 

derivative profile.   

 

4.  Instantaneous Second Derivative Profile Model 

 The one unknown at this point in time is the actual shape of the instantaneous second 

derivative profile.  In lieu of the actual profile, we make the following conjecture: The tail of the 

instantaneous second derivative profile has the same shape as the laminar-like second derivative 

profile tail.  What we actually expect to see is a distorted laminar-like second derivative profile 

tail.  However, for illustrative purposes we will assume the entire shape is laminar-like.  What 

we will attempt to do in this section is show how the Log Law behavior is created by time-

averaging a whole range of laminar-like peaks whose wall shear-stress values range from almost 

zero to a value many times larger than the measured average value as observed experimentally.  

It would then be possible to average this range of second derivative profiles if one had, or could 

measure, the frequency of occurrence of the wall shear stress values (as done by Obi, et. al. [8] 

for example).   
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Figure 3:  The solid lines are the McKeon, et. al. [13] Super Pipe 

profiles plotted in plus units.  The dashed line is the Log Law line. 

Figure 4.  The solid lines are the DeGraaff and Eaton [14] ZPG profiles 

plotted in plus units.  The dashed line is the Log Law line. 
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Figure 6:  Black lines are the Zanoun and Durst [16] channel flow 

profiles plotted in plus units.  The dashed line is the Log Law line. 

Figure 5:  The solid lines are the Österlund [15] SW981129 profiles 

plotted in plus units.  The dashed line is the Log Law line. 
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 For this exercise we will use the DNS data of Wu and Moin [9].  The Wu and Moin 

simulation is of a nominally-zero-pressure-gradient (ZPG) incompressible boundary layer over a 

smooth flat plate.  The available datasets consist of a number of spatially developing profiles 

including laminar-like velocity profiles, transitional-like velocity profiles, and turbulent-like 

velocity profiles.  In Fig. 7 we plot two profiles obtained by twice differentiating two of the 

velocity profiles.  The solid black line is the reported velocity profile closest to the front of the 

plate and corresponds to a laminar-like profile.  This was verified by calculating 1 1/δ µ , where 

1δ  is the displacement thickness.  This value was found to be within 2% of the Blasius laminar 

value [11].  The dashed blue line in Fig. 7 is the farthest reported profile from the front of the 

plate and is considered turbulent-like.  The red dotted line in Fig. 7 is the Log Law line added for 

reference.  It is evident that the blue turbulent-like line is not following the Log Law very well, 

probably due to the fact that the Reynolds number for this dataset is rather low [15].  Never-the-

less, we can see that it has the right trend.  Notice how fast the tail of the laminar-like profile is 

decaying compared to the turbulent-like tail. 

   The fundamental question to be answered herein is how one goes from the laminar-like 

profile (solid black line) to the turbulent-like profile (dashed blue line).  The first point was made 

in Section 2, namely that it is known that at a given point on the wall, the turbulent boundary 

layer is undergoing rapid changes in the wall shear stress [7-9].  These rapid changes in the wall 

shear stress result in an accompanying change in the mean location of the viscous layer of the 

boundary layer which we have just shown 

extends into the Log Law region.     

 To see how we would go from a curve that 

is declining exponentially (Gaussian) away 

from the wall to the one-over-distance-from-

the-wall-squared Log Law behavior, consider 

that Wu and Moin indicate that the skin friction 

coefficient fc  at any point on the plate varies 

from almost zero to a peak value that is four to 

five times larger than the mean [9].  Now 

consider Figure 8.  In this plot, the solid black 

line is calculated by taking the laminar-flow 

profile shown in Fig. 7 and rescaling the plus 

unit values.  The rescaling takes place by 

changing the friction velocity uτ  from the 

laminar flow value to a friction velocity value 

that corresponds to a fc  value that is five 

times larger than the turbulent profile value 

(the profile at Reθ =900 in Fig. 8).  It is easily 

shown using Eq. 4 that the mean location in 

plus units is inversely proportional to the 

friction velocity uτ .  Hence a larger friction 

velocity will mean that the second derivative  
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profile will shift toward the wall as shown in Fig. 8.  On the other hand, the plus scaled second 

derivative scales as τu  so that a larger friction velocity means that the amplitude of the second 

derivative profile will increase as shown in Fig. 8 (see Appendix 2).   

 The next step is to see what happens when the skin friction coefficient value goes in the other 

direction and approaches zero.  From Wu and Moin’s Fig. 8, it appears the smallest skin friction 

coefficient they measured was 0.0005fc ≅  [9].  Consider what would happen if we rescale the 

laminar-like profile from Fig. 7 with a friction velocity value that corresponds to a fc =0.0005 

value.  This is shown in Fig. 9.  In this plot, the black line is again calculated by taking the 

laminar-flow profile shown in Fig. 7 and rescaling the plus unit values.  Obviously the trends on 

the location and amplitude of the second derivative profile is opposite to what we saw when fc  

became larger rather than smaller than the average value.  In this case the peak moves away from 

the wall and the peak amplitude becomes smaller.  

     The results shown in Figures 8 and 9 are approximate instantaneous snap shots of what might 

be happening to a turbulent second derivative profile during the extreme swings in the skin 

friction coefficient.  Wu and Moin indicate that the skin friction coefficient is rapidly fluctuating 

between these extreme values.  Thus, what we would expect is a whole spectrum of these 

laminar-like spikes with mean values/amplitudes varying from Fig. 8-like to Fig. 9-like.  Given 

the PDF of the frequency of occurrence, as shown for example in Fig. 10, one could average all 

the spikes to presumably obtain the turbulent blue line in Figs. 7-9.  This then is a simplified 

model of the origin of Log Law behavior seen in wall-bounded turbulent boundary layers.   
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5.  Discussion 

At first glance it may be perplexing as to why we choose to use the second derivative velocity 

profile to discuss the origin of the Log Law region in the velocity profile of a turbulent boundary 

layer.  It is in fact possible to make many of these same arguments using just the velocity profile.  

The advantage of using the second derivative profile is twofold.  First, the position of the mean 

location of the second derivative profile can be directly tied to the wall shear stress value through 

Eq. 3.  This provides an easy path to visualize the effect of fluctuations of the wall shear stress 

that occur at the wall of a turbulent boundary layer.  The second advantage of using the second 

derivative profiles is that the shape of the second derivative profiles provided a clue as to the 

origin of the Log Law region.  When one looks at the second derivative of a laminar profile and a 

turbulent profile, Fig. 7 for example, it is apparent that the major difference is in the tail region 

of the profile.  It was trying to understand how the tail could become stretched out that led to the 

theory presented herein.    

The realization that the Log Law behavior is based on rapid fluctuations of the velocity profile 

explains why previous theoretical studies based on time-averaged governing equations have not 

been able to explain the physical origin of the Log Law behavior.  It is in fact the time-averaging 

process of the instantaneous changes in the position of the viscous layer that results in the 
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logarithmic behavior.  What is exciting about the new theory is that it opens up a whole new way 

to experimentally attack some of the outstanding questions of wall-bounded turbulent boundary 

layers.  For example, it should be possible to say something more definitive about the empirical 

constant κ  and whether it truly is universal by looking at the evolution of the instantaneous 

second derivative profile wall shear stress frequency of occurrence PDF spectrum as the 

Reynolds number increases for the different type of wall-bounded flows.  It should also be 

possible to say something about the physical extent of the Log Law and why the Log Law 

extends so much farther into the fluid for pipe flow as opposed to flow over a plate.   

The key to the new theory for the origin of the Log Law region are two important insights.  

The first key insight is related to the fact that experimental work [7-9] makes it clear that the wall 

shear stress wτ , or equivalently the skin friction coefficient fc , undergo very large fluctuations 

at any point on the wall in the turbulent flow region.  This leads to the most important insight 

provided herein and that is that these changes in the wall shear stress induce large, quantifiable 

fluctuations in the location of the viscous sublayer in the boundary layer.  This is because the 

center of action in the viscous region, given by the mean location 1µ , is inversely proportional 

to wτ  according to Eq. 3.  Time-varying fluctuations in wτ  will therefore induce spatial 

fluctuations in 1µ  and the viscous sublayer in total.  Note that 1µ  tracks the center location of 

the viscous region.  The width and amplitude of the peak are also varying with wτ .  For the work 

herein we made the assumption that the width and amplitude of the instantaneous turbulent 

second derivative profile behaves similar to the laminar flow second derivative profile 

(Appendix 2).  From the few turbulent datasets that we have checked, the width assumption 

seems to be a reasonable approximation.  In any case, the basis of the new theory on the origin of 

the Log Law region is that if one spatially averages these instantaneous viscous shear layer 

changes, one will find that the normal instantaneous second derivative decay behavior is 

stretched out into a one-over-distance-from-the-wall-squared behavior associated with the Log 

Law for turbulent layers.   

The second important insight provided herein is these fluctuations extend into the Log Law 

region.  This is somewhat contrary to conventional thinking that has assumed that the viscous 

shear is negligible in the Log Law region of the boundary layer.  Conventional thinking may in 

fact be correct in terms of contributions to the momentum equation.  However, in terms of 

contributions to the “tail” of the viscous sublayer, we showed that the Log Law region is an 

integral part of the tail region of the second derivative profile.  Looking at Figs. 3b-6b as well as 

the figures in the Appendix 1, one sees that the second derivative profiles tracks the Log Law 

rather well.  Therefore there is ample experimental support to say that the fluctuations of the 

viscous sublayer show up all the way into the Log Law region.   

The major unknown in the new theory is the shape of the instantaneous second derivative 

profile.  We speculated that the tail of the turbulent instantaneous second derivative profile has 

the Laminar-like Gaussian tail as one moves further away from the wall.  What we actually 

expect to see is a distorted instantaneous second derivative profile due to the turbulent motion.  

From a physical perspective, there is a good reason to assume that the second derivative profile 

of turbulent flow should decay in the same Gaussian-like decay behavior of laminar flow (see 

Fig. 1) into the fluid.  The timescales for the turbulent motion are many orders of magnitude 

longer than the time scales normally associated with the molecular diffusion time scales of the 

viscous forces.  Hence the main factor affecting the shape of the velocity profile (besides fluid 

properties) will be the instantaneous wall shear stress value and the free stream velocity.  For 
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comparable values, we would expect that the laminar second derivative profile and the 

instantaneous turbulent second derivative profile should decay similarly.  The mitigating factor is 

the extent that the turbulent motion itself induces viscous forces sufficient to change the 

instantaneous second derivative profiles.  This will be dependent on the magnitude of the second 

derivative of the instantaneous u  and v  velocities compared to the average second derivative 

( , )u x y velocity values.  In general, this ratio is probably small but in fact the changes to the tail 

region are small compared to the peak of the second derivative profile.  At this point in time it is 

difficult to quantify these contributions.  From examination of Fig. 9 which shows the farthest 

from the wall stretched out laminar-like curve, it is obvious that the blue turbulent-like tail region 

is getting contributions at y+ >200 that would be hard to explain using the theory discussed 

above.  However, these contributions may be of the “wake” type shown in Figs 3b-6b.  Notice 

that the second derivative “wake” type structures do not display similarity using the plus scaling.  

It is therefore possible that the theory described above explains the similarity aspects of the plus 

scaling in the inner region and the turbulent-induced motion explains the wake portion of the 

second derivative profiles.  It may be possible to use DNS experiments as a way of teasing out 

the extent that these instantaneous velocity changes are affecting the tail region.  This is an 

option we are presently exploring, but it was not deemed possible from a time perspective for 

inclusion in this manuscript.  We therefore introduced the simplified model assuming the 

Gaussian-like tail to show how the overall process might work.  In this simplified model we 

directly assumed that the instantaneous second derivative profiles retained the same basic shape 

as the laminar-like profile.  With this assumption in place we showed how wall shear stress 

changes would produce a spread-out tail consistent with the time-averaged turbulent second 

derivative profile.   

The theory on the origin of the Log Law behavior presented herein explains how the 

instantaneous viscous shear layer changes from the (possible) Gaussian-like decay of the 

instantaneous turbulent velocity profile to the stretched out one-over-distance-from-the-wall-

squared behavior of Log Law layer.  However, it is apparent from looking at experimental plots 

both herein and elsewhere that the Prandtl length and velocity scaling parameters works not only 

in the Log Law region but also in the inner near wall region.  In fact, it is now apparent from 

Figs. 3b-6b that the Log Law region is part of the viscous inner layer region, not some overlap 

region as is conventionally assumed.  It is remarkable that the turbulent boundary layer literature 

has been almost totally silent on this issue of inner layer similarity.  This may be explained at 

least in part by the fact that in the Log Law region the velocity profile is following an analytical 

functional form.  One had the hope that a boundary layer theory could be found in which an 

analytical function would result after sufficient manipulations of the governing equations (which 

of course is the eddy viscosity/mixing length model).  For the inner region one does not have this 

theoretical route.  One only has empirical data.  That is until now.  It is clear that the same time-

averaging mechanism of wτ  also applies to the inner region similarity.  The mechanism of 

similarity must is some fashion be related to the frequency PDF of the instantaneous wτ  values 

which in turn must scale with the average wτ value.  This tie-in of the average wτ  value is needed 

to explain the success of the Prandtl “plus” scaling. 

This linking of the inner region and the Log Law region was explained in part by a recent 

paper by Weyburne [17].  In this paper semi-empirical arguments were made to show that the 

Prandtl length scale / uτν  (actually ~15 / uτν ), rather than 1µ , is a better tracker of the mean 



14 

 

location of the second derivative profile for the turbulent boundary layer.  This means that / uτν  

tracks the viscous contributions for the wall-bounded turbulent flow case.  The viscous 

contributions in turn control the flow behavior in the inner region.  Therefore, even though the 

work herein was targeted at describing the origin of the Log Law behavior in turbulent flows, it 

is apparent that it also describes, in part, the origin of similarity of the velocity profiles in the 

inner region using the Prandtl length and velocity scales.  

6.  Conclusion 

A theory for the physical origins of the Log Law behavior of a wall-bounded turbulent 

boundary layer has been outlined.  The keys to the new theory are twofold.  First, the turbulent 

boundary layer fluid undergoes rapid, quantifiable changes in the wall shear stress at any point 

on the surface which give rise to rapid changes in the location of the viscous sublayer of the 

velocity boundary layer.  The second key to the new theory is that experimental results were 

used to show that the viscous shear, which is directly proportional to the second derivative of the 

velocity profile, extends all the way into the Log Law region of the boundary layer.  When this 

viscous layer is time averaged, one finds that the (possible) Gaussian-like decay of the viscous 

shear is stretched out into a one-over-distance-from-the-wall-squared behavior.  The classic 

logarithmic profile behavior of the Log Law is obtained when this viscous shear profile is twice 

integrated to obtain the velocity profile perpendicular to the wall. 
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Appendix 1 
 The importance of the viscous behavior is central to the new theory of the origin of the Log 

Law for wall bounded turbulent boundary layers.  Therefore, in this Appendix we present some 

addition experimental evidence that shows that the second derivaive profiles are following Log-

Law-like behavior in the same region as the velocity profile is following Log-Law-like behavior.  

In Figures A1a to A8a we plot the datasets using the classic Log Law plus unit scaling.  In 

Figures A1b to A8b the velocity profile datasets were twice differentiated to yield the second 

derivative profile plots.  Since the derivatives are performed numerically, we have found that 

only high quality, low noise datasets work.  For certain older, noisier datasets, the second 

derivates are too scrambled to see the trend line.  The list of figures appearing in the Appendix 1 

are as follows: 

 

 

Figure A1.  The solid lines are the Simens, et. al. [18] DNS ZPG profiles plotted in plus units.  

The dashed line is Log Law line.   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 

 

Figure A2.  The solid lines are the Schlatter, et. al. [19] DNS ZPG profiles plotted in plus units.  

The dashed line is Log Law line.   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 

 

Figure A3. The solid lines are the Khujadze and Oberlack [20] DNS ZPG profiles plotted in plus 

units.   The dashed line is Log Law line.   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . 19 

 

Figure A4.  The solid lines are the Hoyas and Jimenez [21] DNS channel profiles plotted in plus 

units.  The dashed line is Log Law line.     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 

 

Figure A5.  The solid lines are some of the T3A Roach and Brierley [22] flat plate profiles plotted 

in plus units.  The dashed line is Log Law line.     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20 

 

Figure A6.  The solid lines are the Zanoun and Durst [16] pipe flow profiles plotted in plus units.  

The dashed line is the Log Law line.   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 

 

Figure A7.  The solid lines are the Bauer [23] spillway flow profiles plotted in plus units.  The 

dashed line is the Log Law line.   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 

 

Figure A8.  The solid lines are the Wieghardt and Tillmann [24] flat plate flow profiles plotted in 

plus units.  The dashed line is the Log Law line.   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 
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Figure A1:  The solid lines are the Simens, et. al. [18] DNS ZPG profiles plotted in plus units.  

The dashed line is Log Law line. 

 
Figure A2:  The solid lines are the Schlatter, et. al. [19] DNS ZPG profiles plotted in plus units.  

The dashed line is Log Law line. 
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Figure A3:  The solid lines is the Khujadze and Oberlack [20] DNS ZPG profiles plotted in plus 

units.  The dashed line is the Log Law line. 

 
Figure A4:  The solid lines is the Hoyas and Jimenez [21] DNS channel profiles plotted in plus 

units.  The dashed line is the Log Law line. 
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Figure A5:  The solid lines are some of the T3A Roach and Brierley [22] profiles plotted in plus 

units.  The dashed line is the Log Law line. 

 
Figure A6:  The solid lines are the Zanoun and Durst [16] pipe flow profiles plotted in plus units.  

The dashed line is the Log Law line. 
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Figure A7:  The solid lines are the Bauer [23] spillway flow profiles plotted in plus units.  The 

dashed line is the Log Law line. 
 

 
Figure A8:  The solid lines are the Wieghardt and Tillmann [24] flat plate flow profiles plotted in plus 

units.  The dashed line is the Log Law line. 
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Appendix 2 

In Figs. 8 and 9 we need to rescale the laminar-like profile from the DNS data of Wu and 

Moin [9].  The rescaling of the mean location 1µ  is straightforward using Eq. 4.  To do this 

rescaling we also need to know how the amplitude and width of the instantaneous second 

derivative of the velocity scales.  At the present time, we do not know how the amplitude scales 

for the instantaneous case.  We will therefore assume that the instantaneous turbulent second 

derivative amplitude scales in the same fashion as the laminar profile second derivative profile.  

For the laminar flow case, Weyburne [10] showed that the second derivative is well 

approximated by the Gaussian distribution function 
2

1 12
2

2

( )

2

y

e v

v

Cud u y
e

dy

µ

σ

σ π

 −
−  

 ≅  

where C is a constant, vσ  is the viscous boundary width, and 1µ  is the mean location.  The 

boundary conditions for this flow situation can be used to obtain the constant C.  Weyburne [10] 

showed that in particular, ( )12 / µ= −C s  where 

( )( ) ( )( ) ( )2

1 1 11 2 2 2 / 2 / .µ σ σ µ σ µ π= + + −v v vs ERF EXP  

For laminar flow, and the work herein, the value of s is well approximated as s=2.  This means 
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The boundary layer width is given by 2
1 1 12vσ µ δ µ= −  where 1δ  is the displacement 

thickness [10].  For simplicity, we will assume that 1δ  is a simple multiple of 
1

µ  so that 

1v aσ µ≅ where a is a constant.  From an amplitude perspective, using Eq. 4 means 
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In plus units we have 

2

1 1
2 2

2
2
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π

+ + − −+  + 
 

+
≅ −  

which means the amplitude in plus units varies linearly with the friction velocity whereas 
1

µ  and 

vσ  in plus units vary inversely with the friction velocity.  These properties are used to rescale the 

laminar-like plot in Fig. 7 to the plots shown in Figs. 8 and 9. 
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